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▫  In the mid 20th century, experimental 
methods  in solid mechanics focused on 
point-wise measurements for quantitative 
data 

  

▫   Early full-field measurements were made 
in photo-elastic, polymeric materials 

▫ Through-thickness average effects  

▫  Local effects using a complex method 
known as “stress-freezing” 

 

▫  The advent of lasers and interferometry  
methods circa 1960s provided investigators                      
with new full-field measurement                       
capability. 

▫  Recording was via film media 

Brief History: Measurement Methods 
1 
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▫ Vincent J. Parks, 1980 

▫ Experimentally showed that the range of 
displacement measurements that was possible 
using speckle photography was limited due to de-
correlation. 

5 

5 

Brief History: Measurement Methods 
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▫ 1980, William F. Ranson and Walter H. Peters III 

▫ For 2D, through-thickness averaged, ultra-sound applications, 
proposed approach for conversion of digitized ultra-sound images 
into estimates for local surface displacements by employing 
continuum-based matching principles 

▫ 1982, Cheng and Sutton; Sutton and Wolters 

▫ Developed non-linear least squares approaches using first-order 
gradients in a matching function to obtain local displacements.  

▫ 1985, TC Chu et al 
▫ Using a DAGE MTI analog camera to record 

images of a speckle pattern at 8 bits, demonstrating conclusively 
that the method could be used to measure deformations 

▫ Translations, large or small 

▫ Rotations, large or small 

▫ Strains, large and relatively small 

 

 Brief History: Digital Image Correlation 

15 
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▫ 1989, Bruck et al 
▫ Developed and demonstrated order of magnitude 

speed improvement using Hessian-based 
methodology for computing iterative improvements in 
optimal matching positions of subsets 

▫ Used linear shape functions for subset-based 
matching 

▫ 1993, Luo, Chao et al 
▫ Developed a stereo-vision system and verified the 

ability to make local strain and deformation 
measurements in cracked material  

▫ 1996, Helm, McNeill et al 
▫ Developed a robust stereo-vision system and 

demonstrated used on full-scale aero-structures as 
well as on laboratory-scale specimens 

▫ 2000, Bay et al 
▫ Extended 2D and 3D methods to volumetric images 

and performs digital image correlation on volumetric 
elements on the interior of a material 

▫ Limited to those materials providing sufficient contrast 
during tomographic imaging 

▫ Requires a tomographic imaging facility 

 Brief History: Digital Image Correlation 

http://c015.chu.edu.tw/ezfiles/15/1015/img/66/luo_Eng_Web.htm
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▫  The rapid growth of computer technology 

that spurred continued growth of computa-

tional methods also provided the foundation  

for the explosion of growth in vision-based   

full-field experimental measurement       

method 

▫  2D-DIC for SEM, AFM and planar 

loading and surfaces 

▫  3D-DIC for general motion and 

deformation of curved or planar 

surfaces 

▫  V-DIC or Digital Volume Correlation for 

interior deformation measurements in 

opaque solids 

▫  Today, the methods are used worldwide by 

scientists and investigators seeking to obtain 

full-field quantitative measurement of motions 

and deformations. 

▫X-Radia Micro-CT 

12, 13 

14 

Brief History: Digital Image Correlation 
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2D Image Correlation: Basic Concepts 

Single CCD camera positioned perpendicular to object surface. 

▫ Specimen has a random pattern on its surface 

▫ Uniform illumination is provided by white light sources 

▫ Loading nominally in-plane, minimizing out of plane motion 

15 
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▫ Relatively simple to use under both laboratory and field conditions 

▫ Relatively simple pattern application for many applications 
▫ Not so simple for microscale applications 

▫ Data acquisition and data analysis  procedures are well established 

▫ Successfully used to make measurements on a range of specimen 
sizes from 0.01 mm to 2m 

▫ Near real time analysis, with data analyzed at > 15000 subsets per 
second 

▫ Accuracy nominally unaffected by large in-plane rotations or 
translations 

▫ Strain levels over 300% have been successfully measured 

▫ Variability  less than 0.01 pixels in displacement on a point-to-point 
basis are commonly obtained  

▫ Accuracy of 100 s or smaller in strain on a point-to-point basis 
through differentiation of smoothed displacement data. 

▫ Effect of out-of-plane displacement is readily estimated and 
minimized using equation w/Z, where w is out-of-plane motion and Z 
is distance from specimen to camera  

General Remarks 

2D Image Correlation: Basic Concepts 
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2D Image Correlation: Key Developments 

▫ First LEFM measurements with DIC (1985-1987) 

 

 

 

 

 

 

 

 

▫ Improving and speeding up DIC; differential corrections for efficient DIC 

     (1987-1989) 

 
 

Hij= [∂2S/∂Pi ∂Pj] 
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▫ First high temperature measurements with DIC (1994-1996) 

 

 

 

 

 

 

 

 
▫ First long-duration creep fracture w/DIC measurements. IN800 at 

650oC for 147 hrs in lab air. Ceramic paint and pattern (1995-1998). 

 

 

2D Image Correlation: Key Developments 
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▫ Ductile fracture at high mag.(1990-1994) 

 

 

 

 

 

 

 

 

 

2D Image Correlation: Key Developments 
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▫ First two papers providing theoretical error predictions for 2D DIC   

▫ INTERPOLATION INDUCED BIAS (1998-2000) 

        THEORY  (cubic polynomial)  SIMULATIONS 

 

 

 

 

 

 

 

▫ VARIANCE AND NOISE-INDUCED BIAS (2005-2009) 

 

 

 

 

 

 

2D Image Correlation: Key Developments 
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2D Image Correlation: Key Developments 

 Simulation process for each sub-pixel translation. 
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16  

2D Image Correlation: Key Developments 

▫ SEM DIC with distortion corrections (2003) 
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Two or more CCD cameras positioned to view same object area 

▫ Specimen has a random pattern on its surface 

▫ Uniform illumination is provided by white light sources 

▫ General loading of specimen is allowed, while maintaining images of 
same object region in at least two cameras 

▫ Images acquired simultaneously by all cameras 

3D Image Correlation: Basic Concepts 

15 
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▫ Full, three-dimensional displacement measurements obtained in 
laboratory and field conditions 

▫ Calibration of camera system is required to convert image motions into 
accurate 3D measurements 

▫  Initial shape and 3D displacements are measured 

▫ Data acquisition and data analysis  procedures are well established 

▫ Curved or planar objects from 0.50 mm to several meters in size 

▫ Includes effect of perspective in image analysis  

▫ High speed data analysis with data analyzed at > 3000 subset pairs 
per second 

▫ Accuracy unaffected by large rotations or translations  
▫ Out-of-plane motion is measured, so does not affect accuracy of the in-plane 

measurements 

▫ Accuracy of 3D displacement data is a function of camera system and 
camera noise level 

▫ Both variance and bias equations are available for estimating displacement errors  

▫ Accuracy of 100 s or smaller in strain on a point-to-point basis 
through differentiation of smoothed displacement data.  

General Remarks 

3D Image Correlation: Basic Concepts 
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2D Image Correlation: Key Developments 

▫ Early 3D vision system and 3D-DIC (1990-1994) 

 

 

 

 

 

 

 

 

▫ Improving 3D-DIC systems for field studies. Aero-structures (1996-2003) 

 

Local system 
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2D Image Correlation: Key Developments 

▫ Error Propagation in 3D DIC (2006-2010) 

 

 

(x,y) = sensor 

position of a grid 

pt. 

Mij = matrix from 

sensor to 3D 

location 

ξ  = vector of 26 

camera 

parameters used 

in M matrix 
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Volumetric DIC: Basic Concepts 

• System shown uses fan beam scanning approach 

• Raw scan data file is digitally stored for each line and 
rotation angle 

• Data is transferred to algorithms embedded in CT system 
and used to reconstruct images for each loading state 

• Image data for each loading state used with optimization 
algorithms to determine internal deformations 

Raw scan data file 

Reconstructed image file 

35 
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▫ Requires volumetric imaging system 

▫ Pattern generally comes from natural internal sources, unless 
seeding of material is viable 

▫ When seeding material to improve pattern, may affect material response 

▫ Image acquisition is slow, with lab CT images requiring up to several 
hours to complete high resolution scanning 

▫ Noise levels are relatively high, with 3% noise or higher common in 
CT systems 

▫ Data acquisition and image reconstruction procedures are well 
established, though prone to introduce artifacts 

▫ Image artifacts commonly seen in volumetric images can reduce accuracy of the 
matching process. 

▫ Images can be obtained for small and large specimens   

▫ Images are large, requiring efficient memory management and fast 
matching algorithms to reduce analysis time 

▫ Accuracy nominally unaffected by large rotations or translations 
▫ Requires robust “initial guess” methods for estimating local motions   

▫ Accuracy of +/-0.02 voxels in displacement on a point-to-point basis 
have been obtained in recent CT studies with high contrast patterns 

General Remarks 

Volumetric DIC: Basic Concepts 



U
n
iv

e
rs

it
y
 o

f 
S
o
u
th

 C
a
ro

li
n
a
 

2D Image Correlation: Key Developments 

▫ First volumetric DIC Paper (BK Bay, 1999) 

 

 

CT images of 

trabecular bone. Note 

the excellent contrast 

obtained throughout 

volume 
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3D-DIC Applications 

▫ Heterogeneous material 

▫ Woven glass-epoxy composite 

▫ Combined compression-bending 
loading 

▫ Large out-of-plane displacements 

▫ Roofing Shingles 

▫ Background 

▫ Preliminary Experiments 

▫ Simulations 
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Woven Glass-Epoxy Composite 

Material Specifics 

▫ Thin sheet composite  

▫ Glass-halogenated epoxy, NP-130 

▫ Glass fibers approximately 7μm diameter 

▫ Five-six layers of orthogonally woven composite in 
plain weave structure for 1m by 1.3m sheets 

▫ Rectangular specimens removed with razor knife 

Edge View 

Specimen geometry 
 
• TH: 1mm  
• W:  17mm  
• L:   150mm.  
 

θ 

θ 

53 

54 
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Woven Glass-Epoxy Composite 

• Out-of-plane motions up to 40mm 

 

• Compression side cameras 

• rotated counterclockwise by ≈20o 

• moved closer to specimen 

• specimen at front of focus volume 

 

• Tensile side cameras 

• rotated clockwise by ≈20o 

• move away from specimen 

• specimen at back of focus volume 

System Schematic 

54 
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Woven Glass-Epoxy Composite 

Axial strain on compression and tension surfaces 

during combined compression-bending loading for 

+/- 45o specimen. 

• Localized effects evident as w increases 

• Critical regions have different spatial trends 
• Effect shown is muted for low fiber angles 
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Woven Glass-Epoxy Composite 

Axial strain for Θ = 0o and 20mm of axial displacement 

is in very good agreement with the large deformation 

results of the modified Drucker formulation on both 

surfaces. 

Θ = 0o 

The elevated compressive strain in critical region appears to be due 

to localized damage, including fiber buckling and matrix failure. 

55 
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Woven Glass-Epoxy Composite 

Effective stress vs effective strain in critical region near 

mid-span of specimen 

53 
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Woven Glass-Epoxy Composite 

• FE Simulations and Large Deformations 
• Abaqus  

• Hashin damage model 

• 5 layers through total thickness-laminate 

construction modeled (not woven) 

• Alternating orthogonal fiber directions for  layers 

(0-90-0-90-0) assumed 

• Layers modeled as individual orthotropic 

material (depending upon orientation of 

“fibers” relative to loading), with linear-elastic 

response and damage accumulation. 

• Hashin model parameters selected based on (a) 

literature data for glass-epoxy specimens of similar 

construction and (b) fitting of off-axis P-δ response 

of bending-compression spencimens. 
• Fibers are not modeled. 
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Woven Glass-Epoxy Composite 

• Differences between 15 and 75; 30 and 60 apparently due to CT-

observed difference in fiber number in 0 and 90 orientations    
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Woven Glass-Epoxy Composite 

Coordinate System 

exx along L0  

 

eyy along L1  

 

Front surface (compression side) of specimen 
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Woven Glass-Epoxy Composite 

Compression side exx Compression side eyy 

Tension side eyy Tension side exx 

0o 
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Woven Glass-Epoxy Composite 

Compression side exx Compression side eyy 

Tension side eyy Tension side exx 

60o 
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Woven Glass-Epoxy Composite 

 60o  at D = 40 mm, Tension side             
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Woven Glass-Epoxy Composite 

 60o  at D = 40 mm, Compression side             
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Applications 

▫ Heterogeneous material 

▫ Woven glass-epoxy composite 

▫ Combined compression-bending 
loading 

▫ Large out-of-plane displacements 

▫ Roofing Shingles  

▫ Background 

▫ Preliminary Experiments 

▫ Simulations 
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 Roof asphalt shingles  
 

o The most common type of sloped-roof  

cover for residential construction in the US 

 

o Shingles consist of:  

Two layers of asphalt, fiberglass mat and 

granules 

 

o Sealing strip (introduced in the 1950s):  

 Minimizes the water penetration 

 Resists against wind-induced uplift 
 

Nails (4 or 6 

per shingle)
Sealing strip (continuous 

or intermittent Underlayment

Wood panel

NailsSealant strip

Roofing Shingles 
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Roofing Shingles 

 3D-DIC setup and wind load 

 

 

 

 

 

o Cannot paint surface due to stiffening effect on soft shingle material 

o Cameras: Two 5 MP (Point Grey Grasshopper GRAS-50S5M-C) 

o Lenses: 28-mm lenses (AF Nikkor 28 mm f/2.8D)  

o Cameras were mounted on a fixed wood frame to minimize wind-induced 

vibrations 

o Roof cover was built to minimize changes in ambient light 

o 5 Hz frequency was used to acquire and store thousands of images 

900 
Camera 2

COMET wind

exit orifice

Fixed wood frame

1270 

39 

Camera 1

1100

Roof panel

915

305

Target shingle

Fixed wood frame

COMET wind

exit orifice

Digital 

cameras
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Roofing Shingles 

• 340kmph wind. Time sped up by 10X. 

• Audio turned off due to high dB noise. 
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Roofing Shingles 
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Roofing Shingles 
Simulation of Shingle Response and Sealant 

Separation 

o Beam on elastic foundation (BOEF) model is employed with finite sealant 

o “Foundation” represents effect of sealant material 

o Assume elastic response throughout deformation process. Beam and 

sealant lengths and properties obtained experimentally from 

commercially available shingle samples. 

o Uplift pressure p1 measured independently for winds up to 200km/hr 

o Energy release rate at each edge of sealant strip is ½ S v2
2  

o Drag force, P, not included in these results 

o Solution requires determination of 12 parameters 
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Roofing Shingles 

Preliminary Experiments 

Shingle length, 0  ≤  l1 ≤  0.1204 m 

Sealant length, l2 = 0.0127 m 

Overhang length, l3 = 0.0254 m 

Sealant thickness: t = 2.8 mm 

BOEF Sealant Parameter: S = 4.53Gpa m-1  
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Roofing Shingles 

Simulation Results-Energy Release Rate 

Nominal l1, l3 

Applied G at the interior and exterior 

edges of sealant as function of sealant 

location, ξ, with constant sealant and 

overall beam lengths. Solid lines represent 

G at interior sealant edge and dashed lines 

represent G at external sealant edge for 

different pressures. 
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Roofing Shingles 

Simulations to Assess Potential 

to Quantify Pressures Using 3D-

DIC 

Nominal σw/l1
4 

Inset: 

Nominal σw/l1
4 

σw = variability in 3D-DIC 

measurements = 50μm 

σP1 = variability in applied pressure 

 

Since P1 = 12.5Pa, for nominal 

geometry the standard deviation for a 

single measurement is nearly 60Pa. 

Thus, one must take nearly 1800 image 

pairs to obtain variability of 1.25Pa in 

the predicted pressure…. 
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▫  The rapid growth of computer hardware speed since mid-
1990s has resulted in both the expansion of computational 
methods and the explosive growth of digitally-based 
experimental methods. 

▫  Digital image correlation methods provide a platform for the 
recording large quantities of full-field deformation data under 
a broad range of conditions 

▫ High rate loading (cameras can record images every 5 
nanoseconds) 

▫ High temperature (cameras can acquire usable images for DIC 
on specimens where T > 1200o C) 

▫ Small (down to 20μm X 20μm) and large (full-scale aircraft) 
regions can be measured. 

▫ Long term studies (experiments lasting several days or longer) 
have been reported. 

▫  The combination of full-field measurements with theoretical 
and computational models provides a rich framework for 
improving our understanding of the physical world. 

Concluding Remarks 
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The Future 

▫ Integration with Design and Development  

▫ Data-driven simulations for design  

▫ Future Trends in Digital Image Based 
Methods 

▫ Multiple measurement system integration  

▫ Continued growth of data-driven 
parameter estimation approaches 

▫ Full integration of analysis and 
measurements for multi-physics studies 

“The future of science is neither vague nor unimaginable. 
It is the result of what we do now.” 
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Increments 

A priori 

information 

• Operational 
conditions 

 
• Materials 

Material parameter 
identification via 

 - Whole field data 
- Novel experiments 

 
• Geometry 

Size and shape 
validation for 
component using 
- Whole field 
metrology 
- Initial specifications 

Validation 

• Whole field 
experimental 
data 

 
• Model/ 

simulation 
platform 

Current 

Design 

• Current 
assembly 
design, proof 
or certification 
test 

Assessment 

• Design or test 
requirement 
assessment 

Final 

Design 

Met 

• TBD 

Design 

Optimization 

Not Met 

• Design 
optimization 
platform 

Integration with Design and Development  

 

Image correlation based methods 
provide unique capability to make the 
measurements required to implement 

such integrated simulation-
measurement design concept 
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Integration with Design and Development  

 • The ability to smoothly integrate full-field 

measurements using 2D-DIC, 3D-DIC and/or V-DIC with 

design simulations requires efficient and robust 

optimization methodologies that can effectively 

identify the constrained optimal combination of 

•Material parameters 

•Structural configurations 

•Operational conditions 

 

• Successful implementation of DIC-based measurement 

methods with simulation platforms offers 

opportunities to replace existing “testing standards” 

with a far more robust design methodology 

 

• Education level of the next generation of designers 

must be adequate for this approach to be viable. 
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▫  Synchronized measurements with multiple 
measurement technologies 

▫ CT systems for slow speed events 

▫ Stereovision systems 

▫ Slow speed events 

▫ High speed events 

▫ Thermographic camera systems 

▫ Multiple average or local sensor measurements 

▫ Pressure  Voltage  

▫ Loads   Current 

▫ Moments  Other environmental variables 

▫  

Future Trends in Digital Image Based Methods 

Integration of multiple measurement systems 
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▫  Common optimization metric; 

 E = ∑i ∑j (F(xi, tj; β), - f(xi, tj) )
2 

 

F() = theoretical function for measurable quantity 

f() = experimental measurements for quantity 

xi   = ith spatial position on specimen 

tj   = jth time of interest 

Β   = vector of unknown parameters by minimizing E 

 

Examples: mixed mode stress intensity factors using 

full-field crack tip data, composite material 

parameters 

 Continued expansion of parameter identification 

Future Trends in Digital Image Based Methods 
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▫  Experimental measurements combined with 
multi-physics models coupling effects from 
multiple environmental factors.  

▫  Multi-physics model validation using estimated 
parameters  

▫  Model employed for predictions in regimes 
where experimental measurements are more 
difficult 

“The future?  It is impossible to envision the 
unimaginable, and wonderful to see it happen.” 

 Full integration of analysis and 

measurements for multi-physics studies 

Future Trends in Digital Image Based Methods 
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Recent DIC-Related Activities 

 

• Article in Applied Mechanics Reviews (6/2013) 

 

• Special issue in Experimental Mechanics focusing 
on Digital Image Correlation (1/2015) 

 

• 2nd edition of book is under development, 
highlighting the most recent trends in DIC and 
applications 

 

 

Future Trends in Digital Image Based Methods 
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▫ Issues associated with extraction of 
deformation information using film as a 
recording media 
▫ Non-linearity in film 

▫ Film processing (darkroom) 

▫ Film stability and handling 

▫ Laser illumination 

▫ De-correlation effects (previous slide) 

▫ Exorbitant time requirements 

▫ Inaccuracies in reconstruction process  
▫ fringe location 

▫ film expansion/contraction 

▫ relationship of object to image coordinates 

▫ distortions in imaging process 

6 

7 

Brief History: Measurement Methods 


