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VES/FSDL deals with actual or potential operational 
performance issues with structures like these:p
Rugeley Chimney

Republic Plaza, 
Singapore

Marina Bay Sands, Resort, Singapore

Millennium Bridge City of Manchester Stadium

Micro-drive plant, Singapore



SHM in other industries:
Health/performance monitoring with real time alertingHealth/performance monitoring with real-time alerting 

and condition-based maintenance are the norm for cars



… whose prototypes are extensively tested before 
i ientering service,

ULS ( ll ) SLS ( i bilit )ULS (collapse) SLS (serviceability)



…as are aircraft which undergo thorough ground 
vibration test before entering service to evaluate fitnessvibration test before entering service to evaluate fitness 

for purpose.



Each civil structure is a prototype, incorporating large 
safety factors. We can only study the structure insafety factors. We can only study the structure in 

operational condition to establish performance profile.
This means learningThis means learning 



WHY DO WE NEED SHM FOR CIVIL STRUCTURES?

Track structural loads/overloads/extreme responses
Provide warning of impending failure (who dares to declare successes?)Provide warning of impending failure (who dares to declare successes?)
Check novel systems of construction/structural forms
Validate structural modifications
Assess structural safety/performance after trauma (e.g. earthquake/impact)
Provide a feedback loop to design and loading codes
Evaluate ’servicability’ e g User comfort/safetyEvaluate ’servicability’ –e.g. User comfort/safety
Track long term movement or degradation to aid maintenance decisions
’Damage’ detection? Not for structures in the real world, in my experienceDamage  detection? Not for structures in the real world, in my experience



Elements of civil infrastructure SHM system  
Automated continuous/long term monitoring One-off/offline assessment
• Sensors (static/dynamic)
• Local data storage

L l i

• (FE) modeling
• (Dynamic) testing

M d l lid ti / d ti• Local processing
• Data transmission
• System identification

• Model validation/updating
→Physics –based/FE  model

System identification
• Data reduction/mining
• Performance/ 

Stonecutters Bridge, Hong Kong

load evaluation
Data-driven model

Using data-driven/physics-based model:
• Anomaly detectiony
• Reporting/alerting/decisions



Example 1: Tamar Bridge: opened 1961, upgraded 
2000, static monitoring system installed by Fugro to , g y y g

check effects of upgrade



SHM configuration with three sub-systems:
Fugro system* (2000, upgraded 2007),

Sheffield dynamic system (2006), 
Sheffield TPS system (2009)Sheffield TPS system (2009)

(Data fusion managed via MATLAB/MySQL database)

*Installed to evaluate effect of upgrade



Results of 2000 strengthening and widening (upgrade):

Lateral 
restraint
←

Vertical 
restraintrestraint

→

1) Deck bearing system rearranged w.r.t. longitudinal restraint



2) Cantilevers added (retaining continuity at Plymouth)



3) Additional stays3) Additional stays 
(φ∼100mm) added 
to carry extra loadto carry extra load

Cable vibrations 
t ll d b  controlled by 

‘interesting’ design of 
damper



Loads are wind, temperature and traffic;
These have complex effect on ‘normal performance’, to be filtered 
out to reveal abnormal performance
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Temperature loads, drive global deformations

We expected strong temperature 
i fl    l k d f  ff t  influence so we looked for effects 
of thermal expansion on bearing 
movement and cable tensions  

Saltash tower 
expansion joint

(March 2007 data)
expansion joint



Relationship of stay cable tensions &deck temperature:
This is hysteretic, nonlinear and seasonal,

not as simple to interpret as first seems
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Deck level and stay cable tension are linked 
(and of course strongly correlated with temperature)( g y p )
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Deck mode frequencies have large ranges with obvious 
diurnal variations but not obvious correlations with loads:

 
 

 Deck vibration modes identified by full scale ambient vibration survey, April 2006

VS1 0.393Hz LS1 0.457Hz VA1 0.595Hz 
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Wind and effects on dynamic displacements for band 
0.1Hz-1.0Hz, only noticeable for strongest winds, y g

20
deck displacements
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Mechanisms not clear, due to incomplete picture of deck 
movement. So we explore with Total Positioning Systemp g y



Definition of Local Coordinates for (Leica) TPS
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Reflector Locations along south side of deck 
d tand on towers
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Remote desktop access to laptop running GeoMoS

Vertical

Longitudinal (E)

Lateral (S)



Measured east/vertical displacement bBehavior
(no clear pattern in other planes so far)



So this is how the continuous section of deck 
(from Plymouth abutment to Saltash tower) moves(from Plymouth abutment to Saltash tower) moves



Result of SHM study so far for Tamar Bridge

• Temperature is the dominant driver of structural configuration
• Majority of dynamic loads derive from traffic (heavy vehicles)• Majority of dynamic loads derive from traffic (heavy vehicles)
• Wind effects on configuration and dynamic response are minimal
• Structural configuration variation leads to major effects on dynamic properties g j y p p

making their use as sole measure for SHM a major challenge
• We believe boundary conditions (bearings) are primary influence on bridge 

global dynamic performance (i e mode frequencies)global dynamic performance (i.e. mode frequencies)
• Stay cable vibrations are well controlled by damper system
• Establishing a performance ‘baseline’ is critical but complex aspect of SHM: g p p p

we need to know what’s OK before we can see what’s wrong
• Ongoing study with validated model not reported here



Example 2: Rugeley chimney
• Reinforced concrete flue gas chimney at 

Rugeley coal-fired power station 
(Staffordshire, U.K.)

• Built in 1968

• 183m high183m high



• 2006: construction of new chimney for flue-gas desulphurisation (FGD) 
system.
183  hi h i f d t  hi  (  h i ht  ld )• 183m high reinforced concrete chimney (same height as old one).

• Approx. 100m in SSW direction from old chimney



• Problem of wind-structure interaction identified during 
construction of new chimney.

• Enhanced vortex shedding from new chimney caused 6%

N

• Enhanced vortex shedding from new chimney caused 
excessive vibration of old chimney (in SSW winds).

• Structural capacity can be exceeded for 1% damping!
C lt t d d it i

2%

4%

6%

W  E

8 - 10
10 - 12
12 - 14
14 - 16
16 - 18
>=18

Wind Speed
(m/sec)

• Consultant recommended response monitoring
S

0 - 2
2 - 4
4 - 6
6 - 8

FSI animation by Dr Antolin Lorenzana (CFD + structure interaction)



Live performance monitoring:
4-channel monitoring system online from March 2007
designed to give alarm for high response and provide-designed to give alarm for high response and provide 

response data

High alert level

Panasonic 
Toughbook+g
NI USB-6251 or
NI USB-9239



NO existing access for accelerometer installation:
Hence QA750s installed by experts ….Hence QA750s installed by experts ….

40m box is cherry-picker accessible backup



…followed quickly by installation of tuned mass 
damper (TMD by Multitech) from March 2007damper (TMD, by Multitech), from March 2007



Tuned mass damper: 
42 tonne mass
(~3% mass ratio)
180kNs/m damping
450mm travel450mm travel

Concrete filled

Damper 

Concrete-filled 
metal ring

p
element (x5)



Real time frequency and damping estimation shows max 
performance of TMD around 4% (29 February 2008)p ( y )



Crosswind response shows clear evidence of enhanced 
vortex sheddingvortex shedding

SSW, 39 mph (17.4m/sec) WNW, 22mph (9.8m/sec)North
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This is bizarre: modal parameter variation over time
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Changes in frequency & damping distribution:
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Th h i iThe mechanism is a 
mystery but constructions 
j i t b li d t ljoints are believed to play 
a part.
Th d h i lThe mode shape is also 
changed: φ40m=0.07→0.06



Chimney has now been demolishedChimney has now been demolished 
….
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Result of SHM study on Rugeley Chimney

• This is a very rare example where pure vibration-based monitoring and 
frequency changes have had direct value for structural assessmentfrequency changes have had direct value for structural assessment

• Safe-range performance of the chimney was proven at all times during 
tandem operation

• TMD effectiveness was demonstrated in real time
• Bizarre form ‘structural mechanism’ observed due to gross temperature 

changeschanges
• Damping, frequency and response level evaluation are critical for super-tall 

buildings (e.g. Burj Kahlifa)
• Real-time evaluation is crucial for effective SHM; results are needed soon 

enough to make informed decision on operation and intervention



Other structures -in UK- include:

City of Manchester stadium
(vibration monitoring( g
for serviceability assessment 
during rock concerts)

Sheffield University Arts Tower
(vibration monitoring for(vibration monitoring for 
serviceability during retrofit) 

Humber Bridge
(static and dynamic response monitoring 

& ff )to study aero-elastic & thermal effects)
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A final thought: The snake‐oil* effect in civil SHM
*quack medicine

Reality

Overly optimistic Overly pessimistic

Benefit

Reality

Perception
“Bubble” fueled by 
excitement and over-
selling (snake oil)Benefit 

to 
Owner 

selling (snake oil)

Steward
“Backlash” fueled 
by lack of tangibleConception of

Experience Generated

by lack of tangible 
benefits

Conception of 
Paradigm 

(technology 
transfer) p
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