Exceptional service in the national interest

The evolution of high and ultra-high speed imaging from qualitative to quantitative

"Seeing is Believing" "Measuring is Understanding" Phillip L. Reu and Mark Nissen

BSSM High Speed Imaging – London England

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Imaging technology is improving DIC. This is both a gift and a problem.

SEM/AFM

CT Scanner

High Resolution Machine Vision

http://www.alliedvisiontec.com

High and Ultra-high Speed Imaging

Why we need high speed.

High speed helps to understand things too fast for human perception.

Eadweard Muybridge (1878)

- Multiple cameras lined up and triggered by a thread.
- Later used clock work timing.

Harold Edgerton (1940s)

- Nanosecond to microsecond exposures.
- Done with polarization and Faraday or Kerr cells for shuttering.

Some vintage high-speed cameras

Photo-Sonics 1B

rocketryphotography.com

Cameras in picture:

- 1. Redlake Hycam II (16-mm @ 1000fps)
- 2. Sandia Image Motion (127-mm film)
- 3. Fastax Camera (35-mm also streak)
- 4. Kodak HG2000 Digital 1000 fps (512x386)

Sandia

National

Other early Sandia Cameras:

- 1. Photo-Sonics 1B (16-mm @ 1000fps)
- 2. Photo-Kinetics Nova (film)

Rocket rail tests.

Tests using Film

1-Mfps film camera.

Imaging by: Mark Nissen – Cordin 330

Scanning of film and extraction of fiducials was used for a few years.

http://specialised-imaging.com/image-systems-motion-analysis

Digital high speed imaging technology is quite varied.

High-Speed Imaging

High-speed CMOS detector. Image off load rate from chip is the limiting factor.

Ultra High-Speed Imaging

Rotating mirror (CORDIN)

Beam splitting

On chip storage

The state of high-speed imaging

Sandia National Laboratories Photogrammetry and DIC have moved high speed imaging from qualitative to quantitative.

The difference is uncertainty quantification!

Possible stereo-rigs

- 1. V1610 181-mm & 184-mm Calibration
- 2. V611 181-mm & 184-mm Calibration
- 3. You could also combine one of each camera.

How do you turn camera images into quantitative measurements?

Example: Quantitative high speed measurements at 6 kHz

³3D-DIC has a complicated measurement chain from calibration to 3D-Position.

Goal: 1-mm resolution in 6 meters

- That is 0.02% error.
- 180 parts-per-million
- 0.25 pixel error (with the given setup)
- Can this be achieved?
- More importantly, can the actual error be quantified?

The errors can be propagated to calculate a 3D uncertainty.

Position

Triangulation

Example: Cased explosive at 1 MHz

Optical distortions must be considered beyond the lens.

Typical displacement results at 1 Million frames per second

W [mm]

You can also get:

- 3D velocity
- Strain
- Strain rate

Example: Blast loaded plate at 35-kHz

1 Stereo-DIC System ≈37,000 fps 368×360 Wide View

Full-field data helps with understanding the experiment.

Example: Simultaneous strain and displacement at 36 kHz.

4 mm/pixel

0.4 mm/pixel

This works because the small speckles are severely aliased in the wide FOV.

We have two systems to measure at two different spatial resolutions.

2 Stereo-DIC Systems ≈37,000 fps 368×360 Wide View ≈33,000 fps 768×576 Tight View

The overall and tight results compare very well...

Subset Undermatch

3D Position

With proper experimental design small virtual gage regions can be measured.

-5162.5

-6200

Estimated Uncertainty of 3D Position Calculation of Strain

Strain profiles across rivets.

Imaging equipment has revolutionized experimental measurements.

High Speed Displacement and Strain

1 Million FPS

Multi-System

Grain scale strain measurement (optical)

une 4, 2013 The Murray Lecture

Volumetric strain fields

Grain Scale: J. Carroll

Volumetric Image: M. Sutton – Murray lecture at SEM 2013

The DIC community needs, training, standardization and guidelines.

• Publication requirements to provide important DIC information.

 A real definition of spatial resolution is needed.

 Improved training beyond vendor provided – and agnostic of DIC software.

Metrology beyond colors January 13-16, 2014 - Ghent, Belgium

DIC Challenge

The DIC Challenge seeks to:

- Provide sample images for code verification and development.
- Benchmarked results for the sample images published and peerreviewed.
- A forum for the discussion and improvement of DIC.

	Description	Set Name	Method [‡]	Contrast	Subset	Noise	Shift	#
Phillip Reu – Chairman					Size	σ(GL)	(pixels)	Images
(US – FFT Shifting)	TexGen Shift X,Y	Sampleı	TexGen	Varying	Specify	1.5	X=Y=0.05	20
 Bortrand Wattricco 	TexGen Shift X,Y	Sample ₂	TexGen	o to 50	Specify	8	X=Y=0.05	20
	FFT Shift X,Y	Sample ₃	FFT Shift	o to 200	Specify	1.5	X=Y=0.1	10
 Evelyne Toussaint (EU – 	FFT Step Shift	Sample ₃ b	FFT Shift	o to 200	User	1.5	0.05 to 0.5	5
Data Analysis)	FFT Shift x and y	Sample ₄	FFT Shift	o to 50	Specify	8	X=Y=0.1	10
 Moi Chung Mang (Asia) 	FFT Shift x and y	Sample5	FFT Shift	Varying	Specify	1.5	X=Y=0.1	10
	Prosilica Bin	Sample6	Binning	o to 200	21	Low	X=Y=0.1	10
Laurent Robert (EU -	Prosilica Bin	Sample ₇	Binning	o to 50	Specify	High	X=Y=0.1	10
TexGen)	Rotation TexGen	Sample8	TexGen	0 to 100	Specify	2	Θ by 1	10
Hugh Pruck (US)	Rotation FFT	Sample9	FFT	0 to 100	Specify	2	Θ by 1	10
	Strain Gradient	Sample10	TexGen	o to 200	User	2	Sinusoid	10
Sam Daly (US)	Strain Gradient	Sample11	TexGen	60 to 130	User	2	Sinusoid	10
Ramon Rodriguez-Vera	Strain Gradient	Sample11b	FFT	o to 200	User	1.5	Tri01 to 1	6
(Latin / Couth Amorica)	Ex1 – Plate Hole	Sample12	Exper.	Good	User	Low	N/A	12
(Latin/South America)	Ex2 – Weld	Sample13	Exper.	Poor	User	Low	N/A	52
	Varying Strain	Sample 14	FFT	0 to 200	User	5	N/A	4
	Varying Strain	Sample 15	TexGen	80 to 180	User	2	N/A	9

The state of high-speed imaging

Sandia National Laboratories

Strain sensitivity case study using real data

Calculation of Strain