

BSSM 2012: Test and analysis of materials in sports engineering

Understanding the traction of tennis surfaces

James Clarke Sports Engineering Research Group The University of Sheffield

Project Overview

Biomechanics Research Team

Background Traction in tennis:

*Dunn *et al.* Assessing tennis player interactions with tennis courts, 29th international conference on biomechanics in sport (2011).

Traction in tennis:

*Dunn *et al.* Assessing tennis player interactions with tennis courts, 29th international conference on biomechanics in sport (2011).

Injury Risk:

Acrylic Hard Court – higher occurrence of injury.

Clay – lower occurrence of injury.

Injury Risk:

Acrylic Hard Court – higher occurrence of injury. COT ~ 0.8 - 1.2 (Nigg, 2003)

Clay – lower occurrence of injury. COT ~ 0.5 - 0.7 (Nigg, 2003)

Injury Risk:

Surfaces which do not allow sliding increase the potential to cause injury.

Project objectives

- Identify parameters that influence traction
- Design and develop a test rig
- Develop predictive models

Methodology

Bespoke UoS1

STM 603 Slip resistance tester

Methodology UoS1 Rig

Horizontal and vertical load cells

Mounted _____ footwear on plate

Hydraulic ram
normal force

 LVDT (displacement)

Pneumatic ram
force
controlled
displacement

Methodology

Strong power relationships were found between Normal Force and COT.

Effect of Roughness

Effect of Roughness

Effect of Stiffness

Effect of Stiffness

Effect of Stiffness

Initial Findings

- Loading conditions change the tribological interaction at the shoe-surface interface
- Testing under inappropriate loading conditions may give misleading results

UoS1 Rig - Limitations

Horizontal and vertical load cells

Mounted – footwear on plate

Hydraulic ram
normal force

 LVDT (displacement)

Pneumatic ram
force
controlled
displacement

Further Testing

STM 603 - Slip resistance tester

Sliding Speed (m/s)

•0.1 ■0.2 ▲0.3 ×0.4 ×0.5

Methodology

Results (observation)

Surface A

Surface E

Test Rig (UoS2)

Pneumatic cylinders

Load Cells and LVDTs – Force and Displacement

Typical Traces:

Wet Artificial Clay

Dry Acrylic Hard Court

Typical Traces:

Wet Artificial Clay

Dry Acrylic Hard Court 0.3 () 0.25 0.2 0.1 0.1 0.05 0

Time (s)

Traction Force (N)

Horizontal Displacement (m)

Typical Traces:

Region II:

Wet Artificial Clay

Typical Traces:

Region III:

Wet Artificial Clay

Results Example (UoS2)

Comparison of surface: Average Dynamic Traction

Results Example (UoS2)

Influence of Hard Court Roughness: Peak Traction Force

Validate

Future Work

Biomechanical Testing at Exeter

Generate boundary conditions

Develop predictive model

Parametric study

Mechanical Testing

Acknowledgements:

Biomechanics Research Team

Dr Matt Carré Dr Andrea Richardson Zhijun Yang Dr Sharon Dixon Dr Loic Damm