Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

SIMULATING THE IMPACT RESPONSE AND FAILURE IN THERMOPLASTIC COMPOSITE SANDWICH STRUCTURES WITH ANISOTROPIC FOAM CORES

Richard Brooks

Polymer Composites Research Group, School of Mechanical, Materials and Manufacturing Engineering University of Nottingham, UK

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Outline

- Introduction
 - Thermoplastic Composites Automotive Applications
 - Thermoplastic Composite Sandwich Structures
- Objective
- Materials and manufacture
- Composite skin material model
- Polymer foam core model
- TPC sandwich structure
 - Indentation simulation
 - 3-point bending simulation
- Conclusions

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Thermoplastic Composites (TPCs) - Automotive Applications

Vehicles of the future must be lighter, eco-friendly, SAFER

- There is now an increased interest in thermoplastic composites for vehicle bumper and frontal structures for improved crashworthiness and pedestrian protection
- The use of these materials in the automotive industry has remained limited due in part to the lack of design capability regarding their crash response

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

TPC Sandwich Structures for Pedestrian Protection ?

• Automotive manufacturers are faced with more stringent pedestrian safety legislation introduced by the European Commission (EC)

Testing with dummies

Finite Element analysis of pedestrian impact

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Thermoplastic Composite (TPC) Sandwich Structures

Plytron® - PP Zote foam

GMT – EPP Foam Bumper

Twintex[®] – Syntactic PP Foam Rail Bracket

Courtesy Security Composites Ltd

- Volume manufacture
- Recyclability
- Impact resistance
- Durability

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Objective

 To develop a predictive computational modelling capability for predicting the elastic and failure response of <u>thermoplastic composites sandwich structures</u> under <u>impact/crash conditions</u>

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Materials and Sandwich Geometry

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Non-isothermal Vacuum Moulding

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Non-isothermal Vacuum Moulding

Heated Stack

Vacuum Applied

Moulding Complete

Core Materials and Sandwich Structures University of Liverpool, 2nd April 2008

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Moulded Beams

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Composite Skin Material Model

- The advanced LS-DYNA® MAT 162 composite material model is used to model the thermoplastic composite skin.
- MAT 162 is based on continuum damage mechanics – 3D elements
- Orthotropic elastic stiffness and strength properties
- Failure criteria (damage initiation) based on different failure mechanisms e.g. in-plane fibre damage, fibre crush damage, matrix and delamination damage
- A set of damage variables, m_i model the post-elastic damage progression
- Element elimination
- Strain rate variables for scaling elastic and strength properties

 $E'_{i} = (1 - \omega_{i})E_{i}$ $\omega_{i} = 1 - \exp\left(\frac{m_{i}}{-r_{i}^{i}}\right),$ $r_{i} \ge 0 \quad i = 1, \dots, 4$

<u>Damage Variables</u> m1 – fibre (x-direction) m2 – fibre (y-direction) m3 – fibre crush/shear m4 – matrix and delamination

Core Materials and Sandwich Structures University of Liverpool, 2nd April 2008

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Composite Skin - Quasi-static Material Calibration

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Composite Skin - Dynamic Material Calibration

- Instrumented Falling Weight impact tests
- Specially constructed tension/ shear and compression jigs

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Composite Skin – 3-Point Bending Validation (Dynamic)

- Dynamic impact
- 163 Joules, 5 m/s
- 80 mm span, 4 mm thick
- 10 mm diameter cylindrical impactor

Delamination

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Composite Skin – Penetrating Dart Validation (Dynamic)

- 35J Falling dart impact
- 40 mm diameter Twintex® Plate, 4 mm thick
- 12.7 mm diameter hemispherical impactor

Experimental Thermograph

The University of

Nottingham

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

The University of Nottingham

Foam Core Material Model

2

- The LS-DYNA[®] MAT 142 transversely isotropic material model is used for the core
- Elastic-plastic response
- 'Tsai-Wu' failure criterion to define yield surface
- 'Maximum principal strain' brittle failure criterion $\epsilon_1 > \epsilon_p$ (bending only)
- Element elimination

Materials Characterisation (Compression)

Core Materials and Sandwich Structures University of Liverpool, 2nd April 2008

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Foam Core Materials Model

Materials Characterisation (Shear)

Materials Characterisation (Tension)

Core Materials and Sandwich Structures University of Liverpool, 2nd April 2008

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

TPC Sandwich Structure – Indentation Model

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Indentation Results

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Quasi-static Indentation

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

TPC Sandwich Structure – 3-Pt Bending Model

Richard Brooks

The University of Nottingham

Polymer Composites Research Group, University of Nottingham, UK

3-Point Bending Results

DYNAMIC 5 m/s 100 J

2 mm skins 25 mm core 200 mm span

Core Materials and Sandwich Structures University of Liverpool, 2nd April 2008

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Dynamic 3-Point Bending

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Conclusions

- TPC sandwich structures can be manufactured cost effectively by a non-isothermal vacuum moulding process
- LS-Dyna MAT 162, composite elastic damage model, can simulate elastic response and damage progression in TPCs under impact loading with good accuracy
- LS-Dyna MAT 142, anisotropic foam model, has been shown to give reasonable predictions of the impact response and failure of a TP foam core under different modes of loading
- Both models require extensive materials characterisation tests and data validation procedures
- The impact response and failure of TPC sandwich structures under indentation and 3-point bending loads has been well predicted using a combination of the above models
- Further work needs to be done on modelling the fracture behaviour of foam cores under impact loading

Richard Brooks

Polymer Composites Research Group, University of Nottingham, UK

Acknowledgements

Colleagues Kevin Brown and Nick Warrior

NOTTINGHAM INNOVATIVE MANUFACTURING RESEARCH CENTRE

Engineering and Physical Sciences Research Council

