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Overall objectives
• Assist designers in offering recommendations for damage 

severity and risk to structural integrity with refinement of core 
safety factors.

• Investigation of cellular response to in-service conditions: 
Long-term progressive/accumulative damage (ageing). 
Impending risk damage (crack).

• Application of remote detection method (TSA) to sensitive 
foam core. Evaluation of stress intensity factors about crack- 
tip.
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Overview
• Ship structure
• TSA
• Initial work on Tee-joints
• Hygrothermal ageing of Tee-joints
• Detailed investigation of foam –aged versus unaged
• Application of TSA to obtain SIFs from notched foam samples
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Loading and failure zones in hull structure
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Motivation

• Structural safety emphasis on face sheets
• Environmental degradation  analogous to corrosion but 

unspecified in design rules
• Ageing has focuses on aerospace materials
• Core vulnerable because of slamming loads, rigging loads, 

grounding- skin abrasion, environmental temperature cycling, 
numerous moisture access routes etc. may lead to delamination 
and core property alteration



University 
of  Southampton

Moisture Access Routes
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Thermoelastic Stress Analysis (TSA)
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Sandwich tee joints-dry
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Calibration of overlaminate
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FEA validation

Quasi-isotropic so a tensile specimen was made from
the foam and SPATE readings taken so that

A = 7.07 x 10-4  MPa U-1 for the flange
A = 2.89 x 10-4  MPa U-1 for the web

A
S
app=

Δσ

Calibration of foam
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FEA validation

-1.20
-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20

-30 -20 -10 0 10 20 30
Distance (mm)

σ1
 +

 σ
2 (

M
Pa

)

FE
SPATE

-2.00

-1.50

-1.00

-0.50

0.00

0.50

-80 -60 -40 -20 0 20 40 60 80
Distance (mm)

σ1
 +

 σ
2  

(M
Pa

)

FE
SPATE



University 
of  Southampton

Tee-joints-aged
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• Specimens removed from chamber twice
• After 60 days and then after 144 days
• Loaded to 6.4 kN ±

 

3.4 kN at 8 Hz
• Readings taken every 30 minutes
• No paint
• 2 hours before reasonable results could be obtained

Thermoelastic tests
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Comparison between wet and dry surface
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Comparison between dry and cyclically loaded

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

-80 -60 -40 -20 0 20 40 60 80

Distance (mm)

U
nc

al
ib

ra
te

d 
si

gn
al

Dry
Cyclic



University 
of  Southampton

Comparison between dry and statically loaded
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Percentage change due to ageing
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Changes in signal 
• Greater rate of degradation in the face sheets than the core;
• Postcure of the materials due to elevated temperature exposure;
• Recovery or improvement of properties after exposure and re- 

drying;
• Aged material performing as a compliant surface layer on an 

unaged substrate;
• Changes in the material properties as a result of plasticisation.
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Damage simulation-coupons
• Environmental ageing represented by 2yr. immersion in distilled 

water (fresh more aggressive than sea). 
• Ageing accelerated with temperature 60ºC (ASTM F1980-99). 
• C70.130  & R63.140 foams used in final investigation. 
• Ageing characterised by gravimetric, mechanical testing & 

microscopy
• Localised impending damage represented by edge crack. Initial 

slit inserted with scalpel & crack-tip grown until a/w=0.5
• In-service complex loading represented by mixed-mode loading 

of edge-crack from pure mode 1 (0º) to pure mode 2 (90º). 
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Mixed-Mode Fracture Toughness
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0 0.281 0 0.217 0 0.177 0 0.062 0 

10 0.255 0.031 0.193 0.022 0.162 0.015 0.051 0.0047 

30 0.227 0.063 0.174 0.04 0.143 0.04 0.046 0.013 

45 0.167 0.074 0.128 0.054 0.105 0.047 0.036 0.016 

60 0.102 0.086 0.078 0.06 0.064 0.055 0.024 0.018 

80 0.058 0.116 0.043 0.081 0.026 0.084 0.016 0.025 

90 0 0.144 0 0.095 0 0.116 0 0.034 
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Thermoelastic Stress Analysis
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TSA data from a growing crack
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• TSA successful in deriving stresses from foam cored sandwich structure 
tee joints

• Hygrothermal ageing study on joints showed trends that could be linked to 
degradation of face sheets and core materials

• Linear foam is sensitive to temperature and when hygrothermally aged at 
60ºC will increase in weight almost twice as much a cross-linked foam. 

• In the aged state preliminary tests showed a significant drop in fracture 
toughness caused by embrittlement of the cells for linear foam.

• TSA can be applied to foam materials and the advance of a crack can be 
monitored in real time but cell morphology can be a source of scatter in 
results. 

• Mode I specimens produced expected cardioid forms.

Conclusions
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