

Thermoelastic methods for assessing hygrothermal ageing and damage in sandwich foam

> Janice Dulieu-Barton Jacqui Earl Elli Lembessis Ajit Shenoi

School of Engineering Sciences

Overall objectives

- Assist designers in offering recommendations for damage severity and risk to structural integrity with refinement of core safety factors.
- Investigation of cellular response to in-service conditions: Long-term progressive/accumulative damage (ageing). Impending risk damage (crack).
- Application of remote detection method (TSA) to sensitive foam core. Evaluation of stress intensity factors about crack-tip.

- Ship structure
- TSA
- Initial work on Tee-joints
- Hygrothermal ageing of Tee-joints
- Detailed investigation of foam –aged versus unaged
- Application of TSA to obtain SIFs from notched foam samples

Loading and failure zones in hull structure

Motivation

- Structural safety emphasis on face sheets
- Environmental degradation analogous to corrosion but unspecified in design rules
- Ageing has focuses on aerospace materials
- Core vulnerable because of slamming loads, rigging loads, grounding- skin abrasion, environmental temperature cycling, numerous moisture access routes etc. may lead to delamination and core property alteration

Moisture Access Routes

Thermoelastic Stress Analysis (TSA)

Isotropic materials:

$$\Delta T = -\frac{\alpha T}{\rho C_p} \Delta (\sigma_1 + \sigma_2)$$
$$AS = \Delta (\sigma_1 + \sigma_2)$$

Servo hydraulic test machine

Orthotropic materials:

$$\Delta T = -\frac{T}{\rho C_p} (\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2)$$
$$A * S = (\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2)$$

Sandwich tee joints-dry

JNIVERSITY OF

Calibration of overlaminate

Calibration of foam

Quasi-isotropic so a tensile specimen was made from the foam and SPATE readings taken so that

$$A = \frac{\Delta \sigma_{app}}{S}$$

A = 7.07×10^{-4} MPa U⁻¹ for the flange A = 2.89×10^{-4} MPa U⁻¹ for the web

So

FEA validation

Tee-joints-aged

Thermoelastic tests

- Specimens removed from chamber twice
- After 60 days and then after 144 days
- Loaded to 6.4 kN \pm 3.4 kN at 8 Hz
- Readings taken every 30 minutes
- No paint
- 2 hours before reasonable results could be obtained

Comparison between wet and dry surface

Comparison between dry and cyclically loaded

Sc

Comparison between dry and statically loaded

Sc

Percentage change due to ageing

Changes in signal

- Greater rate of degradation in the face sheets than the core;
- Postcure of the materials due to elevated temperature exposure;
- Recovery or improvement of properties after exposure and redrying;
- Aged material performing as a compliant surface layer on an unaged substrate;
- Changes in the material properties as a result of plasticisation.

Damage simulation-coupons

- Environmental ageing represented by 2yr. immersion in distilled water (fresh more aggressive than sea).
- Ageing accelerated with temperature 60°C (ASTM F1980-99).
- C70.130 & R63.140 foams used in final investigation.
- Ageing characterised by gravimetric, mechanical testing & microscopy
- Localised impending damage represented by edge crack. Initial slit inserted with scalpel & crack-tip grown until a/w=0.5
- In-service complex loading represented by mixed-mode loading of edge-crack from pure mode 1 (0°) to pure mode 2 (90°).

Moisture Uptake

Mixed-Mode Fracture Toughness

	Unaged	Unaged	Aged	Aged	Unaged	Unaged	Aged	Aged
	C70K _{IC}	C70K _{IIC}	C70 K _{IC}	C70 K _{IIC}	R63 K _{IC}	R63K _{IIC}	R63 K _{IC}	R63 K _{IIC}
0	0.281	0	0.217	0	0.177	0	0.062	0
10	0.255	0.031	0.193	0.022	0.162	0.015	0.051	0.0047
30	0.227	0.063	0.174	0.04	0.143	0.04	0.046	0.013
45	0.167	0.074	0.128	0.054	0.105	0.047	0.036	0.016
60	0.102	0.086	0.078	0.06	0.064	0.055	0.024	0.018
80	0.058	0.116	0.043	0.081	0.026	0.084	0.016	0.025
90	0	0.144	0	0.095	0	0.116	0	0.034
ithampton					<u></u>		(and the second	8

Thermoelastic Stress Analysis

Derivation of SIFs from TSA

$$r = \frac{K_1^2 + K_2^2}{\pi A^2 (S + S_0)^2} [1 + \cos(\theta + 2\phi)]$$

$$\tan^{-1} \phi = K_2 / K_1$$

namp

South

Y OF

$$\sigma_{app}$$

TSA data from a growing crack

Conclusions

- TSA successful in deriving stresses from foam cored sandwich structure tee joints
- Hygrothermal ageing study on joints showed trends that could be linked to degradation of face sheets and core materials
- Linear foam is sensitive to temperature and when hygrothermally aged at 60°C will increase in weight almost twice as much a cross-linked foam.
- In the aged state preliminary tests showed a significant drop in fracture toughness caused by embrittlement of the cells for linear foam.
- TSA can be applied to foam materials and the advance of a crack can be monitored in real time but cell morphology can be a source of scatter in results.
- Mode I specimens produced expected cardioid forms.

